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INTRODUCTION

The editors of the present series of mathematical mono-

graphs have requested me to write a work on elliptic integrals

which " shall relate almost entirely to the three well-known

elliptic integrals, with tables and examples showing practical

appHcations, and which shall fill about one hundred octavo

pages." In complying with their request, I shall limit the

monograph to what is known as the Legendre-Jacobi theory;

and to keep the work within the desired number of pages

I must confine the discussion almost entirely to what is known

as the elUptic integrals of the first and second kinds.

In the elementary calculus are found methods of integrating

any rational expression involving under a square root sign

a- quadratic in one variable; in the present work, which may
be regarded as a somewhat more advanced calculus, we have

to integrate similar expressions where cubics and quartics

in one variable occur under the root sign. Whatever be the

nature of these cubics and quartics, it will be seen that the

integrals may be transformed into standard normal forms.

Tables are given of these normal forms, so that the integral

in question may be calculated to any degree of exactness re-

quired.

With the trigonometric sine function is associated its inverse

function, an integral; and similarly with the normal forms

of elliptic integrals there are associated elliptic functions.

A short account is given of these functions which emphasizes

their doubly periodic properties. By making suitable trans-

formations and using the inverse of these functions, it is found

that the integrals in question may be expressed more con-

cisely through the normal forms and in a manner that indi-

cates the transformation employed.

5



6 ELLIPTIC INTEGRALS

The underlying theory, the philosophy of the subject,

I have attempted to give in my larger work on elliptic functions.

Vol. I. In the preparation of the present monograph much
use has been made of Greenhill's Application of Elliptic Func-

tions, a work which cannot be commended too highly; one

may also read with great advantage Cayley's Elliptic Functions.

The standard works of Legendre, Abel and Jacobi are briefly

considered ih the text. It may also be of interest to note briefly

the earlier mathematicians who made possible the writings

just mentioned.

The difference of two arcs of an ellipse that do not over-

lap may be expressed through the difference of two lengths

on a straight line; in other words, this difference may be

expressed in an algebraic manner. This is the geometrical

signification of a theorem due to an Italian mathematician,

Fagnano, which theorem is published in the twenty-sixth vol-

ume of the Giornale de' letterari d'ltalia, 1716, and later with

numerous other mathematical papers in two volumes under

the title Produzioni mathematiche del Marchese Giulio Carlo

de' Toschi di Fagnano, 1750.

The great French mathematician Hermite {Cours, redige

par Andoyer, Paris, 1882) writes " Ce resultat doit etre cite

avec admiration comme ayant ouvert le premier la voie a la theorie

des fonctions elliptiques."

Maclaurin in his celebrated work A Treatise on Fluxions,

Edinburgh, 1742, Vol. II, p. 745, shows " how the elastic curce

may be constructed in all cases by the rectification of the conic

sections." On p. 744 he gives Jacob Bernoulli " as the cele-

brated author who first resolved this as well as several other

curious problems " (see Acta Eruditorium, 1694, p. 274). It is

thus seen that the elUptic integrals made their appearance in

the formative period of the integral calculus.

The results that are given in Maclaurin's work were sim-

plified and extended by d'Alembert in his treatise Recherches

sur le calcul integral. Histoire de I'Ac. de Berlin, Annee 1746,

pp. 182-224. The second part of this work, Des diferentielles

qui se rapportent a la rectification de Vellipse ou de I'hyperbole,
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treats of a number of differentials whose integrals through

simple substitutions reduce to the integrals through which the

arc of an ellipse or hyperbola may be expressed.

It was also known through the works of Fagnano, Jacob

BernouUi and others that the expressions for sin (a+^S), sin (a— /3)

etc., gave a means of adding or subtracting the arcs of circles,

and that between the limits of two integrals that express lengths

of arc of a lemniscate an algebraic relation exists, such that

the arc of a lemniscate, although a transcendent of higher

order, may be doubled or halved just as the arc of a circle

by means of geometric construction.

It was natural to inquire if the ellipse, hyperbola, etc.,

did not have similar properties. Investigating such properties,

Euler made the remarkable discovery of the addition-theorem

of elliptic integrals (see Nov. Comm. Petrop., VI, pp. 58-84,

1761; and VII, p. 3; VIII, p. 83). A direct proof of this

theorem was later given by Lagrange and in a manner which

elicited the great admiration of Euler (see Serret's CEuvres de

Lagrange, T. II, p. 533).

The addition-theorem for elliptic integrals gave to the

elliptic functions a meaning in higher analysis similar to that

which the cyclometric and logarithmic functions had enjoyed

for a long time.

I regret that space does not permit the derivation of these

addition-theorems and that the reader must be referred to a

larger work.

The above mathematicians are the ones to whom Legendre

refers in the introduction of his Traiie des fondions elliptiques,

published in three quarto volumes, Paris, 1825. This work

must always be regarded as the foundation of the theory of

elliptic integrals and their associated fimctions; and Legendre

must be regarded as the founder of this theory, for upon his

investigations were established the doubly periodic properties

of these functions by Abel and Jacobi and indeed in the very

form given by Legendre. Short accounts of these theories

are found in the sequel.

For more extended works the reader is referred to Appell
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et Lacour, Fonctions elliptiques, and to Enneper, Elliptische

Funktionen, where in particular the historical notes and list

of authors cited on pp. 500-598 are valuable. Fricke in the

article " Elliptische Funktionen," Encylcopddie der mathematischen

Wissensckafien, Vol. II, gives a fairly complete list of books

and monographs that have been written on this subject.

To Dr. Mansfield Merriman I am indebted for suggesting

many of the problems of Chapter V and also for valuable

assistance in editing this work. I have pleasure also in thanking

my colleague, Dr. Edward S. Smith, for drawing the figures

carefully to scale.

Harris Hancock.
2365 Auburn Ave.,

Cincinnati, Ohio,

October 3, 1916.



ELLIPTIC INTEGRALS

CHAPTER I

ELLIPTIC INTEGRALS OF THE FIRST, SECOND AND THIRD
KINDS. THE LEGENDRE TRANSFORMATION

Art. I. In the elementary calculus are studied such integrals

as I —
, I

-. 7--, etc., where s^ = ax^+ 2bx+c. In general

J s J {ax+b)s

the integral of any rational function of x and 5 can be trans-

formed into other typical integrals, which are readily integrable.

Such types of integrals are

n dx n dx p dx
^^^

J Vl-x2' Jo Vl-X"' X Vx^+ 1

In the present theory instead of, as above, writing s^ equal

to a quadratic in x, we shall put s^ equal to a cubic or quartic

in X. Suppose further that F{x, s) is any rational function

of X and 5 and consider the integral | F{x, s)dx. Such an

integral may be made to depend upon three types of integral

of the form

/dx Cx^dx J r dx

These three types of integral, in somewhat different notation,

were designated by Legendre, the founder of this theory, as

elliptic integrals of the first, second, and third kinds respect-

ively, while the general term " elliptic integral " was given by

him to any integral of the form | F{x, s)dx The method of

expressing the general integral through the three types of inte-

9



10 ELLIPTIC INTEGRALS

gral as first indicated by Legendre, may be found in my
Elliptic Functions, Vol. I, p. i8o.

Art. 2. First consider integrals of the form

ex

f-VRix)'
^'^

which, as will be shown, reduce to a definite typical normal

form,* when R(x) is either of the third or fourth degree in x.

Suppose that R(x) is of the fourth degree, and write

R{x) =aoX*+aiX^+a2X^+a3X+ai,

where ao, ai, . . ., are real constants. It is seen that (i) may
be written

_i_ C^ (2)

where X, when decomposed into its factors, is

X=±{x-a){x-^){x--y)(x- 6),

and Vao is a real quantity. If the roots are all real, suppose

that q:>/3>7>5; if two are complex, take a and /3 real and

write 7 = p+zV, 5 = p — i(r, where i = V—i; and if all four of

the roots are complex, denote them by a = ij.+ii', fi-ii— iv,

'Y
= p-\-ia, b = p— i(T.

In the present work the variable is taken real unless it

is stated to the contrary or is otherwise evident.

We shall first so transform the expression X that only even

powers of the variable appear. With Legendre (loc. cit., p. 7),

write

x =P±^ (3)
1+3'

^^'

It follows at once that

dx _ {q—p)dy
(4)

* See Legendre, Traite des fonciions elUpliques, T. I., p. ii, et seq.; Richelot,

Crelle, Bd. 34, p. i; Enneper, EllipHsche Functionen, p. 14.
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where

Y=\p-a+{q-a)y\[p-^+{q-^)y\[p-y+ {q-'r)y\[p-b+{q-5)y\.

(5)

As all the results must be real, it will be seen that real values

may be given to p and q in such a way that only even powers

of y appear on the right-hand side of (s). If in this expres-

sion we multiply the first and second factors together, we have

{p~a){p-^) + {q-a){q-fi)y^

provided

{p-a){q-ei) + {p-0){q-a)=o; .... (6)

and similarly if

{p-y){q-b) + {p-5){q-y)=o, .... (7)

the product of the third and fourth factors of (5) is

(/'-7)(/'-5) + (9-7)(?-5)/.

From (6) and (7) it follows that

pq+aP=t±l{a+fi),
2

and

2

From the last two equations, it also follows that

p+q _ aP-y8 al3{y+d) -ydja+H) ,^.

2 a+/3-7-5' ^^ a+p-y-S

From (8) it is seen that the sum and quotient of p and q

are real quantities whatever the nature of the four roots a,

0, y, and S may be; and further from (8) it is seen that

g-pY_
(a-y){a- 8)i0-y)(0- 8)

_ _ ^^^
2 / (a-fjS— 7-5)2

which is always a positive quantity. It follows that q—p is

a real quantity, and that p and q are real.

The equations (8) and (9) cannot be used if a+0 = y+S.
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In this case, as is readily shown, instead of the substitution

(3), we may write

.a+0 .y+S
x = y-\ =y+- .

2 2

It follows that (5) takes the form

F = (±w2±M2j,2)(±r2±Z2y2),

where m, n, r, and / are real quantities.

The expression (4) then becomes

dx ^{q— p)dy _ dy

VX~ V^' ~fV±ii±g^y^){idzh^fy
(10)

where/, g, and h are essentially real quantities.

In the expression on the right-hand side, suppose that

h>g and put hy = t, and 7 = c, where c < i.
h

It follows that

dx dt

VX /^V±(l±/2)(i±c2/2)
(11)

It is seen that under the radical there are eight combi-

nations of sign. With Legendre, loc. cit.. Chap. II, and Enneper,

p. 17, a table will be given below from which it is seen that

the corresponding functions may be expressed by means of

trigonometric substitutions in the one normal form

dx \ d<i> I dv / X

VX JW"Vi-yfe2sin2 MV(i-z)2)(i-Pz,2)

where M is a real quantity and v = sin <i>.

The quantity k, called the modulus, is also real, and sit-

uated within the interval o^k^i.

Of the expressions under the root sign ^ —{i-\-f){i+c^t^)

may be neglected, since R{x), assumed to be positive for at

least some real value of the original x, cannot be transformed

into a function that is always negative by a real substitution.

Art. 3. Writing A<> = Vi — ^2 gjjj2 ^ and defining the com-



INTEGRALS OF FIRST, SECOND AND THIRD KINDS 13

plementary modulus k' by the relation k'^-\-k'^ = i, the fol-

lowing table results:

dt d(t>

II.

III.

IV.

V.

VI.

via.

V(l+/2)(l+c2/2) A.^'
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where z; = sin <^.

These substitutions and reductions are given in full in

Chap. III.

dv
The radical in

—
is real for real values

of V that are i° less than unity and 2° greater than t- In

the latter case, write J' = l~' a-^d then

dv ds

V(l-Z)^)(l-yfeV) V(l-52)(l-/fe252)

In this substitution as v passes from - to 00 , the variable 5
k

passes from i to o.

It is therefore concluded that by making the real sub-

stitution (i), the differential expression *

dt

may be reduced to the form

I dv

MV{i-v^){i-kWj'

where the variable v lies within the interval o . . . i. Such

transformations fail if the expression under the root contains

only even powers of t, the two roots in i^ being imaginary,

i.e., if R{x)=Ax^+2Bx^+C, where B^—AC<o. This case

is considered in Art. 34.

Art. 5. It is also seen that the general elliptic integral

/
^^') dL
VR{t)

* For other transformations and tables, see Tannery et Molk, Fondions

Elliptiques, Vol. IV, p. 34; Cayley, Elliptic Functions, pp. 315-16; Appell et

Lacour, Fonctions Elliptiques, pp. 240-243.

/
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where Q{t) is any rational function of t, and R{t) is of the

fourth degree in /, may by the real substitutions

i+T ' ^~c+dx^'

be transformed into

f{x)dx

/V{i-x^){i-Px^)'

where f(x) is a rational function of x. The evaluation of this

latter integral, see my Elliptic Functions, I, p. i86, may be

made to depend upon that of three types of integral, viz.

:

F{k,x)= C-=^^=,

iLik, X) = I
— ax,

J Vi-x^

U{n, k, x) = C- dx

+nx^)V{i-x'^){i-k^x^)

Writing a; = sin <^, and putting Vi — k^ sin^ 4> = A{k, 4>), there

results the Legendre notation as normal integrals of the first

kind

of the second kind,

Eik, <!>)=] \{k,,f>)d<t>,

and of the third kind,

"^"'^''^^=Jo (i+«sin2 0)A(^,,»-

The modulus k is omitted from the notation when no particular

emphasis is put upon it.

The evaluation of these integrals is reserved for Chap.

rV. However, the nature of the first two integrals may be

studied by observing the graphs in the next article.
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Art. 6. Graphs of the integrals F(k, (t>) and E{k, 4>). In

Fig. I there are traced the curves y=-

Let values of </> be laid off upon the A''-axis. It is seen that

the areas of these curves included between the x-axis and the

ordinates corresponding' to the abscissa <^ will represent the

integrals F{k, 4>) and E{k, 4>). See Cayley, Elliptic Functions,

p. 41.

If ^ = 0, then A0 = i, and the curves y = A<j), y=— each
A<j>

become the straight line y = i; while the corresponding integrals

Fig. I.

F{(t>), E{4>) are both equal to <t>
and are represented by rectangles

upon the sides and i. When o<^<i, the curve y =—
A0

lies entirely above the line y = i, while y = A(l> lies below it.

As (j) increases from zero, the integrals F{(t>) and £(<^) increase

from zero in a continuous manner, the integral F{^) being

always the larger. Further, for a given value of 4>, as k in-

creases the integral F{4>) increases and E(4>) diminishes; and

conversely as k decreases, F{<j)) diminishes and E{(t>) increases.

li Flk,-\ be denoted by Fi{k), or Fi, and if we put
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Ei=E(k,-], it is seen that when k = o, f(o,-]=Fi{o)=-

=Ei{o). When k has a fixed value, it is often omitted in the

notation. Fi and £i are called complete integrals.

It is evident that both curves are symmetric about the

line y=^Tr and that for a fixed value of k, it is sufficient to

0.0
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Further noting that F{—a) = —F{a), the formula

F{a)=F(T)+F{a-n),

= 2Fi+F{a-T),
a.u
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becomes y = sec <^. The ordinate for this latter curve becomes

infinite for i>
= \i^, and between the values \-k and \-k there is

a branch lying wholly below the line y= — i, the ordinates for

the values (^ = §7r and <^ = fir being = — oo
.

For the values fr and fir there is a branch lying wholly

2.0 r

10 20 30 40 50 60 TO

Fig. 4. The Elliptic Integral £(e, <ii). /fe=sin9.

90

^9

above the line >>= +i, the ordinates for fir and fir being+ oo

and so on.

Corresponding to the first curve, £(<^) = I cos <^ <i<^ = sin </>

and consequently £i = i . This, taken in connection with

what was given above, shows that as k increases from o to i,

£i decreases from ^tt to i

.
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For the second curve, ^(<^)=r sec (t>d(t> = log tan (—|

—

4 2

so that Fi is logarithmically infinite when k =i; and this

taken in connection with what was given above, shows that

1.0

ao
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EXAMPLES

I. A quartic function with real coefficients is always equal to the

product of two factors M= l-\-2mx+nx'', N=\+2iJix-\-i'x^, where all the

coefficients are real. Remove the coefficient of * in Af and N in the

integral

dx

/;Vmn'
and thereby reduce this integral to

{q-p)dy

JV{ay'+b){a'y^+b'y

p-\-qy
by a substitution a;=—;— . and show that p and q are real. Legendre,

i+y'
Vol. I., Chap. II.

^f(x)dx
2. Show that

fiVs{x)

may be reduced to the integral

g{z)dz

hV4z'— g^z— g3

where / and g are rational functions of their arguments and

S{x) = ax'-\-sbx^+iCX+d.

b

The substitution required is x—mz+n, where n= —- , am' =4.

Appell et Lacour, p. 247.

7,. Knowing a real root a 6f R(x) . find the form of ,
, when x=a-\—

.

•^ *
Vr{x) y

Write R(x) = {x—a)(cx'+Cix'+CiX+C3). Leuy, p. 77.

4. Show that the substitution

/- (i+sin 0)+ Vc(i — sin *)
y/ cx= 7=

(i— sin 0)+ V c(i+sin />)

transforms

dx .
(i+VJyd^-

mto
V(x^-i){i-cV) 2Vi-A2sin2.fr'
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where

i+Vc

5. Show that by the substitution x=—;

—

a/-, the integral in which

R{x) has the form \'+2\n cose x^+m'^'', is transformed into one which

has under the radical an expression of the form w^(i+gy)(i+^'y^)-

Legendre, Vol. I, Chap. XI.

6. If the four roots of X are all real, such that a > /3> 7 > 5, show that

the substitution

T(5-5)-s(/3-7)sin2<A

transforms

where

((3-5)-(^-->)sin2

dx . 2 d(j>

mto
Vx V(a-7)(^-5) Vi-zfe^sin^^'

3— y ct— 5
*2= and y<x<0.

a— 7 P— 8

7. If F is of the third degree and if its roots a, /3, 7 are aU real, such

that a>^>7, show that the substitution y=y+{0—y) sin^ <t> transforms

dy
, 2 d<t>

mto
Vf Va-yVi-kHm''<i>'

where

/3—

7

*' = and 7<>'<l3.
a— 7

8. If X is of the fourth degree with roots a, ;3, real and 7, 5= p±icr,

and if lf2=(p-a)2+a^ Af2=(p-/3)2+ff^ show that the substitution

x—a_M I — cos <t>

x—li N i+cos
<t>

transforms

dx . I d(t>

mto
V{x-a)ix-i3)[{x-py+<j^ VMN Vi-k'sm^<t>

where

I {M+Ny-(,a-0)^

2 2MN
and

00 >a:>a: or |3>x> — 00.
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9. Show that the substitution

s—ei

transforms the integral

r dt_

J V(/-e0(/-6-e2){t-ez)
into itself.

10. Show that the substitutions

c c

^ z—ai 02— at Ui— at at—ai
t = , k^ = ;

2— 02 ai—di di— di 02— ai

1 I o
transform

=. mto

dz
±V(a

n dt

(ai-a2){ai-a,)
j

Jai v(z-ai)(z-C2)(z-a3)(2-ai)

II. Prove that the substitution

z— ai fls— fli t— a2 at— flj

2—02 O3— <32 '— fll 04- fli

transforms

r <f2 . r di
I mto i

J V^ (2-00(2—02) (2-as) (2—04) J V^(i— oi)(/-a2)(<-a3)(/-04)



CHAPTER II

THE ELLIPTIC FUNCTIONS

Art. 9. The expressions F{k, (jj), E{k, </>), n(w, k, 4>) were

called by Legendre elliptic functions; these quantities are,

however, elliptic integrals. It was Abel * who, about 1823,

pointed out that if one studied the integral m as a function

of X in

C' dx r* d<l> ^ r \u= I
— = I =, a; = sm</), (i)

Jo V(i-a;2)(i-yfe2a;2) Jo Vi-Fsin^,/,

the same difficulty was met, as if he were to study the trig-

onometric and logarithmic functions by considering u as a

function of x in

/^ <fx . f' dx— = sin~^ X, or u= \ — = log x.

Vl-X^ Jl X
''

Abel proposed instead to study the upper limit a; as a function

of u. Jacobi {Fundamenta Nova, § 17) introduced the nota-

tion <t>
= amplitude of u, and written cj> = amu. Considered as

a function of u, we have a; = sin <^ = sinawM, and associated

with this function are the two other elliptic functions cos <^ =

cos am u and A4> = Aamu = Vi^ k^ sin^ <p. Gudermann (teacher

of Weierstrass) in Crelle's Journal, Bd. 18, p. 12, proposed to

abbreviate this notation and to write

:x; = sin 4> = sn u.

Vi —x^ = cos <i>
= cnu.

Vi — k^x^ =A4> = dnu,

' Abel (CEuvres, Sylow and Lie edition, T. I., p. 263 and p. 518, 1827-30).

24
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It follows at once that

dn^u-\-k'^sn^u = i.

From (i) results -3- =— or -^ = A<^, so that -— amu=Aam,u = dnu.
a4> A</) du die

It is also evident that

d d . , dcj} J
—-rS7i u = — sm<l) = cos(t>^-= cnudnu,
du du du

-^cn ti= —snu dnu,
du

-r-dn u= — k^sn u en u.
du

Further, if m = o, then the upper limit <^ = o, so that am 0=0,

and consequently, sn = 0, en = 1, dn = 1.

If (j) be changed into — ^, it is seen that 11 changes its sign,

so that am{— u) = —am u, and

sn{ — u) = ~snu, en{— u)=enu, dn{ — u)=dnu.

Art. 10. In the theory of circular functions there is found

the numerical transcendent -k, a quantity such that sin - = i

,

2

cos - = o. Writing

C' dx . _,

Jo Vi—x^

we have a; = sinM. Thus - may be defined as the complete
2

integral

T_ n dx

2 Jo vr^
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Similarly a real positive quantity K (Jacobi) may be defined

through

Jo V(i-a;2)(i-yfeV) Jo

^'^
r= F(k

"

(Art. 6).

Associated with K is the transcendental quantity K', which

is the same function of the complementary modulus k' as

K is of k. The transcendental nature of these two functions

of k and k' may be observed by considering the following

infinite series through which they are expressed.

If {i—k^ sin^ (t>)~' be expanded in a series, then

Jn Vi- k^ sin^ (j)

2.4. . . . 271

where V2n = I sin'''^ d4>.

In particular, if <j) = -, we have by Wallis's Theorem,

IT

Jo 2.4. . . . 2W 2

It follows that

Similarly, it may be proved that

which confirm the results of Arts. 6 and 7.

Art. II. If in the integal j — there be put <t>=mr-e,
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then it becomes
2n+ l

2 'd4>
I — = K: and if in the integral i

we put <j> = mr+e, then this integral is

de

Jo Ad
It follows that

£
nd^^ nd^^ pd0^ ^ r' ^
Jo A<^ jo A0 j^ A0 " j A</,"

- (n— 1)—

Mis:,

so that — = amnK; or, since - = aw if, we have am nK = n amK.
2 2

Note that

where

r''^+^d<t> r''^d<i>
,

r''-+» d<i> ^
,

Jo A0 jo A-/* j.r A0

j„ A,^ Jo Ae'

further, since any arc a may be put =Mir±/3, where /3 is an

arc between o and -, we may always write
J

2

a = mr±0 = am{2nK±u),
or

2n flw K±am u = am{2nK±.u).

Art. 12. Making use of the formula just written, it is

seen that am K=-,
2

snK = i, cnK = o, dnK = k'.

sn{u±2K) = -mu, cn{ii±2K) = -cnu, dn{u±2K)=dnu;

sn{u±4K)=snu, cn{u:h4K)=cnu, dn{u±4K)=dnu.

Note that 4K is a period of the three elliptic transcendents

snu, cnu and (iraw; in fact, it is seen that 2ii: is a period of

dn u and of ^— = tn u. Also note that
cnu
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sn2K = o, cn2K= — I, dn2K= i,

sn4K = o, cn4K = i, dn^K^i.

Of course, the modulus of the above functions is k; and, since

K' is the same function of k' as K is of k, we also have

sn{u±2K' , k') = —sn{u, k'),

sn(u±4K', k')=sn{u, k'), etc.

Art. 13. The Gudermannian. As introductory to the Jacobi

imaginary transformation of the following article, there is a

particular case * where ^ = i . Then

M = F(i, </.) = r—J^= = \og tan (-+^). (Cf. Art. 7.)
Jo Vi-sin2 4> \4 2/

Here 0, considered as a function of u, may be called the Guder-

mannian and written <i>=gd u, the functions corresponding to

sn u and en u being sg u and eg u. Then

"" = tan /-+-^ = ^+^^'^ '^/^ _ i+sin </> _ cos (^

V4 2/ I — tan<^/2 cos i — sin^'

or,

CgM ' 1+SgU CgU

It follows that

<^g"^ « I
-u

== ^=—r— = sechM,
e +e cos ZM cosh m

and

€"— € " .sin iu sinh Msgu=—-—zz = - i =—T— = tanh u.
e +e costu coshw

These formulas may be written

sgu= —i tan iu,

cgu = i/cos iu,

tgu= —i sin iu
;

sin iu = itgu,

cos iu = i/cgu,

ta.n iu = isg u.

*See Gudermann, Crelle, Bd. i8, pp. i, et seq.; see also Cayley, loc. cit.

p. 56; Weierstrass, Math. Werke I, pp. 1-49 and the remark p. 50.
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The above relations may also be derived by considering

two angles 6 and connected by the equation cos Scos </) = i.

For there follows at once

sin (^= — z tan 6,

cos = i/cos 6,

tan <^= — i sin d.

sin 6 = i tan <t>,

cos d = i/cos 4>,

tan d = ism (j>,

Further, there results,

cosedd = isec^(i>d(f), or de=i—~.
cos ct>

It follows that

e = nogtan('^+^y

Then, by assuming that cj)=gdu,vfe have e = iu, and conse-

quently the foregoing relations.

Art. 14. Jacobfs Imaginary Transformations* Writing

sine=ztan<^, cos 6 = -^—, sin0=-ztane, A(e, k)= ^^'^' \
cos cos (/)

, ,„ . del)
J, r^ de . r* dd>we have dd = z and .

1 v-

Jo A(e, ^) Jocos Jo A(e, ^) Jo A(0, ^')'

* d,p
T^=u, SO that <^ = aw(M, ^'). there results

II
—,—TT=iu, and 6 = am iu.

'0 A(», ^)

These expressions, substituted in the above relations, give

sn{iu, k) =i tn{u, k'),

cn{iu, k) = A'cn{u, k')

dniiu,k)J-^^.
cn(u, k )

From this it is evident that the two functions en and dn

have real values for imaginary values of the argument, while

sn{iu) is an imaginary quantity.

* Jacobi, Fundamcnta Nova, § ig. See also Abel, CEuvres, T. I., p. 272.
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Among the trigonometric and exponential functions, we

have, for example, the relation

cos m — ,

where the argument of the trigonometric function is real

while that of the exponential function is real. We note that

an elliptic function with imaginary argument may be expressed

through an elliptic function with real argument, whose modulus

is the complement of the original modulus.

Art. 15. From the formulas of the preceding article it follows

at once

sw[i(M+4iir'), k]=itn{u+4K', k')=sn{iu, k),

and also

cn{iu+4iK', k) =cn{iu, k),

dniiu+^iK' , k) =dn{iu, k).

If in these formulas iu be changed into u, we have

sniu±4iK', k)=sn{u, k),

cn{u±4iK', k)=cn{u, k),

dn{u±4iK' , k)=dn{u, k).

It also follows that sn{u±4iK, k')=sn(u, k'), etc. If in

the formula sn{iu) =i tn{u, k'), we put U+ 2K' in the place of u,

then

sn{iu+2iK', k) =i tn{u+2K\ k')=itn{u, k') =sn iu.

Changing iu to u, we have

sn{u±2iK')=snu, cn{u±2iK') = —cnu, dn{u±2iK') =^ —dnu,

and

sn(2iK')=o, cn{2iK') = — i, dii{2iK') = — i.

The modulus k is always understood, imless another modulus

is indicated.



ELLIPTIC FUNCTIONS 31

It follows at once that

sn{ud=4iK')=sn u, cfi{udz4iK')=cn u, dn{u±4iK')=dn ii.

and

sti UiK') = o, en {4iK') = i

.

dn{4iK') = i

.

It is also seen that

sn{u±2K±2iK') = —sn u,

S}i{uzi=4K±4iK')=s>i u, etc.

In particular, notice that

the periods of smi are 4K and 21K',

the periods of cnu are 4A" and 2K+2iK',
the periods of dmi are 2K and 4/A".

Art. 16. Periodic Functions. Consider the simple case of

the exponential function c" and suppose that u = x+ i\. It

may be shown that f""^-'"=f" for all values of u; for it is seen

that e'' = c''"'"''' = e''(cos v+/ sin v),. If we increase u by 27r/.

then y is increased by 2ir and consequently

e"+2'< = e^[cos {y+2T)+is\n (>'+27r)] =e^(cos y+i sin >')=£''.

It follows that if it is desired to examine the function e", then

clearly this function need not be studied in the whole w-plane,

but only within a strip which lies above the A'-axis and has

the breadth 2t\ for we see at once that to every point mq vvhich

lies without this period-strip there corresponds a point wi

within the strip and in such a way that the function has the

same value and the same properties at mo and xii.

Similarly it is seen that the two functions sin u and cos 11

have the real period air, and consequently it is necessary to

study these functions only within a period-strip which lies

adjacent to the I'-axis with a breadth 2ir. As already noted,

Abel and Jacobi found that the elliptic functions had two

periods. In the preceding article it was seen that snu had

the real period 4K and the imaginary period 2iK'.
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On the Z-axis lay off a distance 4K and on the F-axis a

distance 2K' and construct the rectangle on these two sides.

Further suppose that the whole plane is filled out with such

rectangles.

4K

2iK'

2iK

4K |8K

Fig. 6.

Then it will be seen that the function sn u behaves in every

rectangle precisely as it does in the initial rectangle. Similar

parallelograms may be constructed for the functions en u and

dnu. See Art. 21.

A-x XT ^ •.. • cose ^, ^ ^' sin e
Art. 17. Next write sm.d> = , so that cos =

,

AS
'

Ai9 '

and A0 =— . It follows that— = —— and consequently
AS A4, Ad M J-

r^= p^= p^_ r^=K-u,
Jo A0 Je Ad Jo Ae Jo A0

if we put u
-f:

de

Ad'
or 6 = am u. It follows that (t>

= am(K—u),

and from the above formulas

/ „ s cnu ,,, , k' snu
sn[K—u)=-— , cn{K—u)^ .

an

u

dnu '
dn{K— u) =

dnu

In these formulas change - m to m and note that sn{~u) =
—snu, etc.
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It is seen that

,
^ ^. cnu ^sn{u±K) = ±-j— snK = i,

dnu

cn{u±K) = ^-- , cnK = o,
dnu

dn{u±K) = +-^, dnK^k'.
dnu

For the calculation of the elliptic functions, the above

relations permit the reduction of the argument so that it is

always comprised between o and ^K, just as in trigonometry

the angle may be reduced so as to lie between o and 45° for

the calculation of the circular functions.

Art. 18. In the above formulas put iu in the place of u,

and it is seen that

en iu I
sn{iu±K) = ±

cn{iu±K) = =F

dn{iu±K)

dniu dn{u, k')'

ik'sn(u, k')

dn{u, k')

k'cn{u, k')

dn{u, k')

Further, in the formulas sn iu = i tn{u, k'), etc., write u±.iK

for u and it is seen that

i cniu, k')
sn{iuztiK', k) =i tg am{u±K' , k')

cn{iu±iK' , k) =

dn{iu±iK', k) = =F

k sn{u, k')'

dn(u, k')

sn{u, k'Y

I

sn{u, k')

In the above formulas change iu to u. We then have

sniu±:iK')=-r ,

k snu

cn{u±tK') = ^- ,

k snu

dn{udtziK') = ^i cot am u.
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If in these formulas u = o, then

sn(±iK') = 00 , cn{±iK') = oo
, dn{±.iK') = oo .

Further, if in the preceding formulas u-\-K be put in the place

of u, then

II I dnii
sn{u+K±iK')

k sn{u+K) k Lti ^<,

cn{u+K±iK') = ^-^,
kcnu

dn{u+K±iK') = ±ik'tgamu;

and from these formulas, writing, m = o, there results

T ih'
sn{K±iK')=\, cniK±iK') = =F^, dn{K±iK')=o.

k R

Art. 19. Note the analogy of the transcendent K of the

elliptic functions to - of the circular functions. Due to the
K

2

TT

relation am{K~u)=—amu (Art. 11) Jacobi called the ampli-
2

tude olK— u the co-amplitude of u and wrote am{K— u)— coam u.

It follows at once from the above formulas that

cnu
sin coam u = -—

,

dtiu

k'snu
cos coam u = — ,

dnu

A coam u = -—

.

dnu

sin coam(zM, k)=-—.—--, etc.
an{u, k )

Art. 20. Remark. The results obtained for the imaginary

argument have been derived by making use of Jacobi's imaginary

transformation; and by changing iu into u we have implicitly

made the assumption (proved in my Elliptic Functions, Vol. I,
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Chaps X and XI) that the elliptic functions have the same

properties for real and imaginary arguments.

Art. 21. By a zero of a function, snu for example, we mean
that value of u which, when substituted for u in sn ii, causes

this function to be zero, while an infinity of a function is a

value of u which causes the function to become infinite.

In studying the following graphs note that on the bound-

aries of the period parallelogram of sn u, there are six points

at which this function becomes zero; but if the adjacent

period parallelograms be constructed, it will be seen that only

two zeros belong to each parallelogram. In fact, in each

period-parallelogram there are two values of u which cause

the function to take any fixed value; that is, any value

being fixed, there are always two values of u which cause the

function to take this value. From the following graphs it

is seen that any real value situated within the interval — oo

to -|- 00 is taken twice by each of the three functions sn u, en u,

dn u.

u =



36 ELLIPTIC INTEGRALS

u+iK'

Fig. 9. y = sn{u-{-iK ).

In Fig. 9, the value iK' coincides with the origin.

K K + iK' K+2iK'

Fig. loa. y= sn{iu+K).

3K 3K

-1

+iK' 3K + 2iK'

-1

Fig. 106. y= sa.{iu+2iK).
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,l/=iA'

V=+l

u=K
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SiK

4,-K'
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EXAMPLES

I. In the formulas of Art. 17 put u= ~, and show first that dn—=^vk'

, ,
„K i-k' 1 K k' K _li

and then iH— =—rr-=——-„ en—=——-, aw—= tan \ 77.
2 k^ i+k 2 i+k 2 \k

2. Prove that

X i+k' -' \ i+k'

3. Prove that

iK' 7 /A" V7+k
, iK'_ /——

sn— =—^, en— = -— , an— — Vi+ ^.
2 \ k 2 \'k 2

4. Show that

sn{K+liK') =-^, cn{K+\iK') = -i-—~, dn{K+liK')==Vj-k.
Vk v'/t

Show that

\ 2k

cni^K+UK') = -

'"""'^ ^

X 2k

dn{iK+?jiK') = --{Vi+k'+iVi-k').

6. Show that

du u
i«(«+A+ 3JA )=- ,

k en II

cniu+iK+iK') =-^,
ken u

<f«(M+3A'+3iA") = .

en u

7. Making the linear transformation x=kz, we have

dx

J.• \l<'-'"H-F'

.i f
-'-

Further, put

"-Xv(.-=t(.-»v,' "-f^i^;:^^-
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and show that

liku, -j=ksn{u, k),

cn( ku, - ) =dn(u, k),

dn{ku,-\= cn{u, k) ;

sn{ ku, y j
=co5 coam{u, k'),

en ( ku, —\=sin coam {u, k').

ik'\ _ I

Y k J Aam{u, k')
dn[ ku.

ii+k)z , dz
8. The quadratic substitution t-

—— transforms
l+kz'^ V(l-Z2)(l-A232)

Mdt ^ ,
2Vk , ,. I

into , where I = ——, and M = ——.

q. Show that

i+k)sn{u. k)

+kstt^{u,k)'

r, .^
2V*1 (l

sn[{i+k)u,--^\ = -

[2Vk\ cn{u,k)dn{u,k)
(i+k)m, 7 = ;

— r—

'

[2^/^! I-\.
— ksn'^{u. k)

: +/fe sn\u, k)



CHAPTER III

ELLIPTIC INTEGRALS OF THE FIRST KIND REDUCED TO
LEGENDRE'S NORMAL FORM

Art. 22. In the elementary calculus such integrals as the

following have been studied

i
dx

Vi-x~
= sin ^a; = cos ^ Vi—x^.

p dx

JI Vx--i

= cot ' x = tan 1 -.

= cosh 1 a: = sinh~i Va;^-i=log \x+Vx^-i\

Following Clifford * an analogous notation for the elliptic

integrals will be introduced. Write (see Art. 9),

x = snu, Vi—x^ = cnu, Vi—k^x^ = dnu.

Since (see Art. g), —- = cnu dnu, it follows that
du

dx

or

1" "

|^=V(i-:c^j(i-Fx2);

-- = u = S}i ^x = cn ^Vi—x^ = dn~^Vi—k'^:^
'0 V{i-x^){i-k-^x^)

= F{k,<t>)=F{k,sm-^x) (i)

In particular, it is seen from this formula that the substitu-rdx
V{i-x'^){i-k--x^)

* Clifford, Mathematical Papers, p. 207.

41
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into the normal form I =.P(^, </>) Further,

from the tables given at the end of the book, which we shall

learn later to construct and use, the integral is known as soon

as X is fixed.

Similarly, if there be put x = cnu, Vi—x-=snu, V^'2+^2^2

= dnu, —-=—;— = —snudnu= —"^{i—x^){k'^+k^x^),itiol\oyvs
du du

that

n dx

X V(7
z = u =cn~^x=sn~^V 1 ~ x~ = dn~^Vk'^-\-k^x^

x^){k''^+k^x^)

==F(k, <t>)=F{k, cos-i;x:)

=Fik,sm-Wi-x^) (2)

It is seen also that the substitution x = cos </> transforms the

integral on the right-hand side into the normal form.

Tf , Vi-x^ Vx^-k"^ dx
ii x = dnu, = sn u, ; =cnu,---—— k'^sn ucnu

k k du

= - y/{i-x^){x:'-k'^), we have

X
dx J _. ^jVi—x^= u = dn ^x = sn '

X V{l-X^){x^-k'^)

=cn-n^^^-^)=F{k,4.)

=F\k, sisin '
(3)

Further, writing x = tan amu, it follows that snu=— ^

Vi+x^'

Vi+a;2 \/i+a;2 du cn^u "

and

Jo V(i+;c2)(i+/fe'2a;2) Wi+W
= F{k, tan-1 x). (4)
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Art. 23. I. If a>b>x>o, write a: = 6 sin
<i> in the integral

dx

V(a^-x^){b-^-x^y

and we have, ii k^ = ~,

= - I -7 — = -sn
X b

.&' a
isa)

2. If ca >x>a, write x = - , and it is seen that
sin

I"
dx

V(x--a-0(x2-62) a
sn

a b

Lx' a

If a>b>x>o.

dx
=cn'

(56)

(6a)

{6b)

V(a^+x^)(6--.v-0 Vd^+b^ [b' Vd~+ b^.

(see IV, in Art. 3), and also

r^" dx I ,[b a '

Jc V{d^+x^){x^-b^) Va^+ b^ lx Vd^+ b-i

(see V in Art. 3).

It is almost superfluous to add that for example in (6a)

X
the substitution t = cos <t> transforms the integral

dx

^+x^){b^-x^)

into

/a^+bVo

d(t>

V^
b-

sin-^ <j>

a^+b^

It is also seen that if a>x>b>o,

dx

Jx V(a2-a;2)(:c2-62) a La a J
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that is, the integral on the left-hand side becomes

ajo
•^i ^— sin-^c^

^2

for the substitution

- = \ I 5— sm2(^.

Further if a> 6

Jo \/(x2+a2)(x2+62) a lb M a^ \

(See I in Art. 3.)

Art. 24. In the formulas (i), (2), (3) and (4) above, sub-

stitute X for x^, and it is seen that-

Jo Vx{i—x){i—k-'x)

= 2dn~^iVi-k^x,k), .... (9)

C '^'^
^orn-Uy'r. k)

,

(10)

Jx Vx{l-x){k'^+ k^x)

C ^"^ = W».-l(Vr h\, (11)
Jx Vx{i-x){x-k'2)

C ^"^ = ^in-Uyx,h^ (12)
Jo \/x{i+x){i+k"^x)

Art. 25. Suppose that a, /3, and 7 are real quantities such that

a>^>7; further write M = ^^^^, k,^ =^^^ and k2^ =^^,
2 a—

7

a—y

where ^1^4-^2^ = i, so that the one is the complementary modulus

of the other. Put A' = {x—a){x— C) (x— 7)

.

If CO >x>a> p>y, write a;— 7 = (a — 7) cosec2<^ and we have
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When 00 >x>a> p>y, it is seen that

and when p>x>y, we have

X

45

(14)

"

;(a-7)(/3-4

A/(3-7)(a-x)'
'

= cn' J
ia-l3){x-y)

{fi-y){a-xy
ki (15)

Further if P>x>y, then

4'^^'"-WS''-)="-W"-^y''

=(/«-mJ^-^", /fei). (16)
a—

y

Art. 26. As above write

a-l3M = ^^-\ k,^ = . X = {x-a){x-fi,{x-y).
2 a.—

y

For the interval a> x> fi> y, it is seen that

"X°^='«-'WS'^="-[n/:-^'^' (•"

and for the same interval

JffV-X l^ia-ff){x-y)

-cn'

Further, if 7>:c> — 00
, then

Jx V-X l^^-x J L\i3-a;
, (19)

and for the same interval

<7lv=»-te 'h-'i^^,4 (»)
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Art. 27. From formula (14) itis seen that, if 00 > a; > --,
k-

J^^

dx —^f^ ' ^

1 Vx{x-i){k^x-i) ^ji_Vx{x-i){x-i/k'^

2sn' .Lkzil^ .=,..-!. Uz^k]=2cn'A.l
, „ k , (21)

x — i ' I \yk'{x—iy

and from formula (13) for the same interval,

J. Vx{i-x){i-k-^x) \\k^x / \\ k^x

(22).

Using formula (17), it follows that, if —> x> 1,

f"' dx I i — k'^x ,,

7x Vx(i-x)(i-k^x) \^ i-k-
i;(i —x){i—k^x)

and for the same interval (see formula (18))

= 2icn-H^j^-^^.k'}. (23)

Ji Va;(i-x)(i-/fe2^) V\x(i-F) ^

If o> a;> — CO
, the formula (19) offers

f ^^
-2isn-^[ in k'\

Jx Va;(i-a:)(i-yfe%) \Vi-x' /

= 21 CM"

while for the same interval it follows from formula (20) that

r-=J^= = 2isn-^(JIH, k'\

J-Wx{i-x){i-kH) V\i-Fx /

= 2icn-'(J^l^,k'). . (26)
\ ^i I — Px
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Art. 28. Next let X={x-a){x-p){x-y)(x- d) and further

put

V(a-y){P~8) (p-y){a-8) (a-^)(y-S)
'' ia-yXP-Sy^'-ia-yXp-Sy

and note that k3^+ki'^ = i.

If then CO >x>a, there results, supposing always that a> |8>

T>5,

-en' I
(a-/3)(a:-5)

L\(a-6)(x-/J)'

and if ci>x> ^

()3-5)(a-x)

(a-0)(x-5)'

{a-b){x-fi)

\(a-ei){x-b)
,ki

lia>X>P,

J0 V-X L^Ca-

y)ix-i3)

p){x-yy

= cn'
l(p-y)(a-x)

^ia-ayx-yy"-
while if fi>x>y,

i VA'"'" [^{p-y){a-xy'

= cn~^
I(a-l3)ix-y)

^(B-yVa-xy'iP-y){a-xy

When x lies within the interval ^> x> y,

kz

€^.-i4
(0-8)(x--y)

{p-y){x-sy

-cn' (V
{y-b){&-x)

{p-y){x-by

(27)

{21

(29)

(30)

(31)
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and when 7>a;> 5, it is seen that

-»-'^/f^|^'*<)-
<3''

If 7>ic>5,

—(^/J7Z^.M, . (33)

and if 5>x> — t»

„ C^ dx _,/ (a-7)(5-x) ,

Jo VX \^{a-&){y-x)

-cn'
\\((x-6){y-x) I

Art. 29. By means of the above formulas it is possible

to integrate the reciprocal of the square root of any cubic or

biquadratic which has real roots; for example (see Byerly,

Integral Calculus, 1902, p. 276),

dxn dx ^ r"

Jo y/{2ax— x^){d^—x-) Jx V{2a—x}{a — x)x{a+x}

Ja V{2a-x){a-x)x{a+x) ^L \ 2 /
2

-sn-Y^,^^)] [cf.(3o)]

\ 3 2
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Remark.—In the above integrals it is well to note that (34),

for example, may be written

showing that each factor under the root sign is positive for the

interval in question.

Art. 30. It is seen that the substitution

a—Y y~y
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By the same substitution (i8) becomes (19).

Art. 31. Let the roots of the cubic be one real and two

imaginary, so that X has the form {x— a)[{x— pY+ c^].

Make the substitution

,2X (x-p)2+ <T=

{x— ctY X— a

(i) (x— p)^+ (t2
— 3'(x— a) =0, which is an hyperbola.

The condition that this quadratic in x have equal roots, is

(2) >'2+ 4(p-q:)j-4(72 = 0.

The roots of this equation are, say,

(yi, y2) = -2(p-a)±2V(p— a)2+ o-2.

It is evident that ji is positive and yo is negative.

If we eliminate y from (i) and (2), we have the biquadratic

[(x-p)2+ <T2]2+4(p-«)(^-«)[(^-p)'+ <r2]-4<T2(x-a)2=o,

the left hand side being, as we know a priori, a perfect square.

Equating to zero one of these double factors, we have

(3) x'^— 2aX-\-2ap— p^ — (j'^ = o.

Further let x\, X2 denote the values of x which correspond

to the values yi, y2 of y.

From (3) it follows that

{Xi, X2)=a±\^{oL-pY-\-a^,
or

xi = P+ly\, X2 = p-\-^y2.

Further there results

{x-XiY (at— ^2)2
y-yi= -—-, y-y2=- —,

x—a X—a
and

dy _ {x—Xi){x-X2)

dx (x-a)^
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It follows at once that

Jdx _ /"" dx _ r^ (x—a)dy

I VX Jz {x-a)Vy Jx {x-Xi)(x-X2)^y

Jv ^y{y-yi){y-y2) Vji-y, \yy-y2 ^yi-yi)

(cf. (i3))=-iL^c«-i(^,A . . (37)
vxi-a;2 \x-X2 /

where k"^ =—'-^^ and k'^ = - '

yi-yo y\—y2

In the same way, with the same substitutions, it may be

proved that

p ^_dx ^ T" d^

V

y)(3'2-y)

[cf. (20), where k'^ =— is the complementary modulus of the
yx-y-i

preceding integral], or

Further write },P = {p— (xf-\-(r^, so that X\=a-^M and X2

= a —M. It is evident that

=-^c.-(^i^,Acf.(37)

"Vl LM+(^-a)'*J'^ 2 2 M- • ^^9)
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Similarly, it may be shown that

C ^^ =-^cn-^(fr^r'^l k'\ (40)
X V{a-x)[{x-p)^+a^] VM \M+ia-x) )

where

2 2 M
Note that the modulus here is the complementary modulus

of the one in (39) and that the product of the two moduli is,

say,

M
As numerical examples, prove that

f
dx I ,/a;— I — V2 .—===—=cw-i -=, ^1 ),

Vx^ — I v^ \x—i-\-^2^

J^^

dx I _, /v'3+ 1— x ,

1 Vx3-i V3 \V3-i+:i:

^ dx I _, /^/3 — i+a; ,

Vi— a::^ v^ \V3+ i—

X

dx I i/i— x —V^T
J-ooVl— ic3 V3 \i_^-f-s/3

where 2^i^2 = | = sin 30°, ^i = sin 15°, ^2 = sin 75°.

(Greenhill, loc. cit., p. 40.)

Art. 32. Suppose next that we have a quartic with two

imaginary roots. It is always possible to write

X={ax^-\-2hx+c){Ax'^+ 2Bx+C),

where the real roots constitute the first factor, and the imagi-

nary roots the second so that b^ — ac is positive and B^—AC
is negative.

Make the substitution

ax^+ 2bx-\-c N ,..

^ = Ax^+ 2Bx+C^D''^^' W
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or

(a) x'^{Ay-a) + 2x{By-b)+Cy-c=o.

This equation has equal roots in x, if

(b) iBy-by-{Ay-a)iCy-c)^o.

Let the roots of this equation be yi and y2.

From (a) it is seen that

[2xiBy-b)Y = x^(Ay-a)^+ 2x'{Ay-a){Cy-c)+ {Cy-cy,

which combined with (b), gives

/ N Cy— c By — b .
,
_ Ab — aBW ~^ = -^^—r = 7" ' Ax+B=— ,

By— b Ay—

a

Ay —

a

(d)
- "^"^"^ ^ bx-\-c

. _ _ {Ab — aB)x+Ac — aC
^^ ^ Ax+B~Bx+C' y '^- s^^c

From (i) it follows, if D is put for Ax^+ 2Bx+C, and since

Axi'^+2Bxi+C=xi{Axi+B)+Bxi+C, that

_ __x— x\ 2{Ab — Ba)xx\-\-{Ac— aC){x-\-x-^-\-2{Bc — bC)
yi-y ^ xi{Axi+B) + {Bxi+C) '

which, see (c) and (d),

_ x-xi x{2(Ab-aB)x,+Ac-aC}+Xi(Ac-aC) + 2(Bc-bC)

D '^^'^'~°'' xMb-aB)+x,{Ab-aB)+Ac-aC

so that

yi-y =^^-^{Ay\-a){x-xi)\

and similarly

{a-Ay2){x-X:^^
y-y, = ^

and

dy _ 2{Ab—aB){x\—x){x—X2)

di~ Z?2
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It follows that

dx

_ dy _ Ddy

D\/y 2{Ab — Ba){xi—x){x —X2)^

^ y/{AyI— a) {a—Ay2) dy^

2{Ab-aB) ^y(y^^y){y-y2)
Noting that

{Ayi-a){a-Ay2) = -A^yiy2+Aa{yi+y2)-a'^ =^-j^^^,

it follows that

, , dx 1 dy
(e)

Vx Vac-e^ ^Ay{yi-y){y-y2)'

From {b) it is seen that }'i>oand }'2<o, and from (e) it is

evident that y varies from o to yi for real values of VX- Hence,

see (17),

r-' dx _ I A
J. VX 2VAC-Byv

dv

'^yid'i-y)iy-y2)

or,

(41)

where F =-^^ and jfe'2=-^5:^.
-yi— ^2 y\—y2

Art. 33. Suppose next in the quartic

X = {ax^+2bx+c){Ax'^+2Bx-\-C),

that all the roots are imaginary so that b^ — ac<o and B^ —AC<o.
In this case the roots yi and ^2 of the equation of the preceding

article

iAC-B2)y^-{Ac+aC-2Bb)y+ac-b^^o

are both positive.
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Hence the integral of the equation (e) may be written [cf.

(17)] in the form

=sn~'^{^ ~—--, k]=—:=cn-

where

-yiy-yi){y-y2)

Vvi \\yi-y2 I Vyi ^^1-^2 /

' ' " '' ^) (42)

yi yy

and wher6 y oscillates between the two positive values y\

and _V2.

Art. 34. As an example of the preceding article, let

A' = a::*+ 2D^a;2 cos 2co+z/* = (a;2+ 2z;3(; sin co+i;^)(x2— 2dx sin u+Z)^).

If we put

X--\-2'M sin a)+l)2
y =-; : —-,

X- — 2VX sin u+z;*^

it is seen that

yi = tan2/-+-j, y2 = tan2( --- j, x\=v, X2=^ —v,

, I — sin CO ^ o/t 'o\
^ =—— = tan-

,

i+sin o) \4 2/

and

I
^:c

i Vr'+ 21)2x2 cos 2 0)+ !)*

ti(i+sin iS) Vi+sin oj x^— 2rasin co+z;2

When (0 = -, D = I, the preceding equation becomes
4

—i^=(2-VI)J;^-J(^/;-I)^/^+\i-^^"^^t . (44)

Vi+a;^ 1 ^a;2-V2x+i J

where ^ = (v'2 — 1)2.

X
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^ I ~l~2
For the substitution — =

, there results
V' 1—2

r^ dx ^^ n dz

'+ 2I)^X^ cos 2a)+D* ^""Jz V (l— 22)(C0S2 aJ+2^ sin^ oj)

which, see (2),

=— cn~'^{z, sin to) =—cw~M -, sin a; I.

If in this formula we put o) = jtt and -j = i, we have

J:. \/:C*+ I 2 Vx^+I 2 /

J"^

(fa; I ,/i— x^ I /-\
= -fW-M -, -V2 .

Vi+a:4 2 Vl+x2 2 /

Art. 35. It was shown above that the substitution

• 2 , ^ I— x^

I — ^^a:^

transforms the integral

On the other hand

p Ja: p dx

— I =K—n
Ja V(i-x2)(i-yfe2a:2)

where

dx

H\V{i-x^){i-k^x^)

It follows that

i—x^
,0 o=K-^^~^X,

I — k-x^
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a relation among the integrals. It is also at once evident that

^/;

I — X- cnu

which is a relation among the functions.

In {A) make ^ = o, and then

h Vi-x2

and from {B) it is seen that

; = sin~'V I— :»;2

r dx n dx r- dx _x
Jx Vl-X^ Jo Vl-x'^ Jo Vl—X- 2

n dxu=
I
-—== = sir

Jo Vl~X^
if w=

I =sm~"a:.
Jo Vl~X^

Hence

sm-i vi— r-'=— sm-ia;.
2

a relation among the integrals; and on the other hand it is seen

that

Vi — sin^M = sin(— u
\2

a relation among the functions.

It is thus made evident that we may study the nature of the

elliptic functions and their characteristic properties directly

from their associated integrals just as we may study the proper-

ties of the circular, hyperbolic, logarithmic and exponential

functions from their associated integrals. This should be em-

phasized both in the study of the elementary calculus and in

the theory of elliptic integrals and elliptic functions.

Art. 36. In the applications of the elementary calculus

it was often necessary to evaluate such integrals as 1 sin u du
;

so here we must study the integrals of the most usual elliptic

functions. From the integral u = I — , it is seen at once that
Jo A0
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du-=— , or dnudu = d<i>, so that d amu = dnudu, dsnu =
A(i>

cnudnudu, dcnu= —snudnudu, ddnu= —Pcnusnudu.
We further note that

sn^u+cn^u = i, dn^u— k'- = k^cn^n, dn^u+ k^sn^u = i.

We have without difficulty

- k'^sn u en udu x f dv/, I r— k^sniicnudu i fsnudu^--\ -^^ =-^

(if v = dn u). The last integral is

I dnu
- cosh~i -7= — - cosh~i .

k

Further since dnK = k', Art. 17, we have

,
/"'^

, , ,/dnu\ . , ,/,cmi\ . dnu+kcnu
k I snudti = CQsn~^[ -—- I =sinh~M k-— I =log —, .

Similarly it may be proved that

k\ cnu du — cos~^{d7tu) =sm~^ {ksnu),

and

rdnudu = 4> = am u = sin ^snu = cos ^ en u

Art. 37. The following integrals should be noted:

^sn ucnu dn it du \ f dv/dii _ Cs

sn u J -f-, (if v = sn^u).
snhicnudnu 2J z'v(i — d)(i— yfe-^uj

Further writing V (
I

—

z))(i—li^v)=(\—v)z, the last integral

becomes

— log
V(i-d)(i-Fd) + i I+F"

'0 2

cnudnu-\-\ i+^^1

- log—
2 2

W

= _i log p— "•;"--^^
I

+c
2 L iW^M 2 J

1
, [ 2cn u dn u+cn^u+dn^u\

, ^=— log 5 +C,
2 L 25?rM J

so that, omitting C,

r du _. r snu
1

J 5«M \_cnii-\-dnu\'
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where the arbitrary constant is omitted. Similarly it may be

shown that

/
du _ I , ^ r^'5WM+</«Ml

en u k' '^ I cnu J'

and that

/du I . ^[k'^sn'^u— cn^u]
-— =—r-, sm~M .

dnu 2k L dn-u J

Further by definition E{k, </>) = I A4> d4> (cf . Art. 5), or since

4) = am u and d am u = dnudii,

E{am m) =
J

dn^u du.

It follows that

and

X

sv?udu=y^[u—E{amu, k)],

cn^udu=-r-[E{amu, k)—k'hi\.

Art. 38. Reduction formulas. The following is a very useful

and a very general reduction formula.* Consider the identity

T" d
(w+sin2 ^y sin (^ cos <^A(/)= I —{(wi+sin^ <j)Y sin cos <l>A(f>\dcl>

Jo d4>

=
j *i2M(w+sin2 c^)"-' sin2 cos^<l>A^4>

+ (w+sin2,^)''[cos2</,A20_sin20A2<^-F sin^ cos^,^]} ^.

In this expression put w+sin^ <j> = v, so that sin^ <i>=v—m,

cos^ </) = I —v+m, A^^ = I — kh+'k^m, and writing

" Jo ^4> Jo

'*(w+sin2 <i,yd<t>

A4>

* See, for example, Durege, Elliptiscke Funktionen, § 4, Second edition.
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then there is found

(m+sin^ <^)''sin cos 4>A<j)= -2yu/lF^_i + (2M+ i)5F^

-(2M+ 2)CF, + i+ (2M+ 3)-^2F.+2, . . (f)

where A =m{i+m){i+k^m);

B = I + 2m+ 2k^m+ ^k^m'^

;

C = i+F+3Fot.

From this formula it is evident that every integral V^ may
be expressed through the three integrals T^o, Fi, F-i, the latter

being forms of integrals which in Chapter I have been called

elliptic integrals of the first, second and third kinds respectively.

The following formulas may be derived immediately from the

formula above, by writing

Sm{u) =
I
sn"'u du, Cm{u) = i cn"'u dii, Dn{u) =

j
dn'^u du,

= sn~hccnudnu, . (ii)

{n+i)k2C„+2{u)+n(k'^-k^)C„{u)-{n-i)k'2C„.2(u)

= cn^'^usnu dn u, . (Hi)

{n+i)Dn+2iu)-n{i+k'^)Dn(u)+{n-i)k'^D,^r,{u)

= krdn~^usnucnu. . (iv)

In particular, if u=K say in {ii), there results

{n+i)k2S,.+2{K)-n{i+k'')Sn{K) + {n-i)Sn-2{K)=o,

de.which is the analogue of Wallis's formula for j sin" 9

Art. 39. It may be noted that any of the quantities

Fisin-cj)), F{cos^4>), F (tan^cjb), where i^ is a rational function

of its argument, may be expressed through an aggregate of

terms of the form M{m+sm^ 4>y, where yu is a positive or nega-

tive integer or zero and where M and m are real or imaginary

constants.

Further by writing x= , where 2 = sin</), or z = cos<^,
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or c = tan (^, it is seen that the general elHptic integral of Art. 5,

,- rQ{x)dx , . • .1, r CFisin^ <i,)d<t> , . ,

namely, I , may be put in the form I
—-, which

in turn may be expressed through integrals that correspond to

the integrals I'o, Vi and V-i of the preceding article.

Art. 40. Returning to formula {i) above, make m= — i, and

note that if 771 =0, we have A=o, B = i; the formula becomes

/ \ i-jA^ r ^ d4>] ,^ Csm- 4> d(t>

Next let 7)1 = —I, so that ^ =0, B= —k'^, and we have

(b) -tanM^=-/fe'2 f-^^-k^^ rcol^4>
^ ^

J cos2 <f>A4> J A4>

finally let wj=—— , so that A=o, B=—, and the reduction-, -, _ ^

formula is

_Fsin</,cos.A^^„ r I ^_ A^

Art. 41. Legendre, Traite, etc., I, p. 256, oflers the following

integrals " which are often met with in the application of the

elliptic integrals." These may for the most part be derived at

once from the formulas given above.

^ = F{k, 4>), where A(l> = Vi^^Wsin^ <j> = A,
'0 A(j)X
j

Ad4>=E{k, <i>), or
j
dnhidu=E{u), since d<j) = dnudu.

i
*J(/) I J.., ^x k- sin <f> cos <t>

/o

J^"

du _E{ii) k^snucnu

)o dn^u k'~ k'H7iu

i
''^-^^ = ^^F{k,<i>)-E{k,4>)lox
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J
I

srfiudu = r-^^ ,

C" 2 J -k'^u+E{u)
I cn^udu= ———^.

Jo k^

rX^r^=Pi[^ t^^ 0+^'^i^(^, 4>)-E{k, 4>)l or
Ja A COS'' 4> R-'

C" du _tnudnu+ k'^u — E{u)

Jo ^^l P2
'

J'~'^

d<t) tan^ <j> _ A tan <)>-E{k, <l>)

. A P '°'

, , , dnutnu— Eiu)
tn^u du -J-

— .r
J'~'''d4>

cos^ 4> Ite'/i. ,\ ir/T. ,ST , sin (/> COS (^

J^*(f
</> sin^ (/> I ,. , . 7/21?/!, _,M sin </) cos (/)

p^4<^ = Atan </.+F(;fe, .^)-£(^, <^),
^0 COS- (t>

I A tan20<i0 = A tan sl)+F(yfe, </>)-2£(/fe, 0),

A3£i<^ =-A sin </> cos »+^ £(^, <!>)-—F{k, 4,),

Jo 3 3 3

1
A sm2 0(i0= A sin cos 0+_-i£(^, ^)+:l^^F(yfe, ,^),

3 3^ 3^

1 A cos2 4>d4, = ^A sin <^ cos 0+^4!^£(A!, 0) -~F{k, 0).
3 3^ 3^

To these may be added

J^'-^jJ^=
cot <I,A4>+K-Ei-F{k, ^)+E{k, 0), or
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I ——=cotamudnu+K—E\—u+E{u),
Ju sn^u

JrK g^
I

—— = col amndnu—Ei+E(u), or

r IT

J'''^

d4> _ r - i-sin^0 d^

^ tan^ A J« sin- A^'

EXAMPLES

1. Show that

f—£^ = iVIcn-'(:c,iV;),

2. Show that

I y/\—x*dx-2^ 2 \ {dnH—dn*x)dx-—^K[ mod )=o.874oi...

3. Show that
J^
^^ dx= 2aJ i«'^x<ia.= 2a£0, ^

.

/"*' snudu I

4. Show that

I ^—^, = ^;^-^-^.

If M=
I

y/{a--x'^){b'^-x^)dx,wn'Lty=sn-^(j, -),cf. formula (5a),

low that

u= ab'' Pc«^y<f«2yrfy=ia|(a^+6^)£0,M-(a'-6')i<:j, (mod.

-

It for the inverse functions,

I 5«~^M(fM=M in"H<+-coshi[

5

and show that

Byerly.

6. Show that for the inverse functions,

(t) I 5«~^M(fM= Min ^+-COShf| TT

iii) 1 cn-'« du= u crT^U-^ cos"* (V^'^+Ai^m^)
;
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7. Note that if X=ax^+2bx+c,

Vx
fx^dx

or, if we put Vp= I
—

f^, we have

x''Vx = a{p+i)Vp+i+b{2p+i)Vp+cpVp.i.

Further, if t=sn'^u, it is seen that

m-l

dt

I sn"*u du=^ I . -

J J ^(i-t){i -kH)

Derive the reduction formulas {ii), {Hi), (iv) of Art. 38.

8. Prove that
/dS _ nirabc _i/c m^— 6^\

a'^ b'' c^

where the integration is taken over the surface 5 of a sphere x'^+y^+z^=r^.

Burnside, Math. Tripos, 1881

9: Show that

'snu
,

I , dn u+k'
du =r/l°g '

cii u k en u

/:

X
r cnu ,

I
—— du

J sn' u

/sn u ,

du
en' u

enu
, , i—dn u
du =Iog

,

S71 u sn u

sn u 1 ^ dn u
du=-- log

-

en udn u k'' en u'

dn u

sn «'

I dn u

k''' en u



CHAPTER IV

THE NUMERICAL COIMPUTATION OF THE ELLIPTIC INTE-
GRALS OF THE FIRST AND SECOND KINDS. LANDEN'S
TRANSFORMATIONS

Art. 42. With Jacobi * consider two fixed circles as in

Fig. 15 and suppose that R is the radius of the larger circle and

r the radius of the smaller circle. Let the distance OQ = l.

From any point B on the large circle draw a tangent to the small

Fig. 15.

circle which again cuts the large circle in A . Denote the azimuth

angle BOX by 21/' and AOX by 2<^. OG is drawn perpendicular

to AB and its length is denoted by p. Note that the angle

G0X = <t>-4^ and G0B = <t>+4', p =R cos {<p+xl^) and QM=r =

p+OH = Rcos ((j>+4^)+lcos{(l>-i), or

r=iR+l) cos <^cos rp-(R-l) sin </> sin <p.

* Jacobi, Crelle's Journal, Vol. Ill, p. 376, 1828; see also Cayley's Elliptic

Functions, p. 28.

65
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When \p = o, let the corresponding value oi (t>he n, so that

r = {R+l) cos M, or cos At =—^, sinM=— ^ ' •

Denote the ratio yr— by Am, so that Am=^—,; then since

Afi^ = i — k^ sin^ /u, it is seen that k^ =
(R+iy-r^'

Returning to the figure, it is seen that

AM^=AQ^-MQ^ = R^+P+2Rl cos 2ct>-r^

= (i2+/)2-/-2_4;i?sin2 0;

or

r2AM^ = {(R+iy-r'^\A^<j>;

and similarly

BM^ = \{R+iy-r^W^I^.

If the tangent is varied, its new position becoming A'B\
consecutive to the initial position, then clearly we have

AA' :BB'=AM : BM;

or

AM BM '

and if for AM and BM their values be substituted, it follows

that

dd) , dxlf

A0 AiA

Suppose that the smaller circle is varied, the centre moving

along the X-axis while r and I are subjected to the condition

^^ = (ry_^i\2_ 2 ' ^ ^^^^ constant.
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In particular when the smaller circle reduces to the point

circle at L, as in Fig. i6, then

f = o, 0L=/and/fe2=-
4^^

{R+lf

Fig. i6.

Let 6 represent the angle XLA . It is seen that

2

and consequently dd = d<j>-\-d4'-

It is also seen that the angle LAO = 6— 2(i) and GOZ = 0+i/'.

From the triangle ALO it follows at once that

lsme=Rsm{2^-d) (i)

The relation —-^+—^=o, becomes here
AM BM

d4> _ d4/ _ de ^

'AM~BM~2AG'
or, since

it follows that

d<l> de (R+l)

A<t> 2VR^-Pam^9
(2)
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Formula (i) may be regarded as the algebraic integral* of

(2), or (2) may be considered as being produced by the trans-

formation (i).

Write ^1 =^ and put <(>i in the place of 6.

It is seen that

'^~R+ri+kr i+/fei' ' j+k" •
^^'

and

—rr—-r=-(l+Ai) -rr j^, (2)

^1 sin <^i=sin (2</)— </)i) (i')

The last expression may be written

^1 sin (<t>i
— 4>+ (j>)=sm {4>-<i>i+ 4>),

from which we have at once

tan (</)i
— <^) = — tan = ^' tan </>, ... (3)

i+«i
or

(i+^')tan0 .
, (1+^') sin </) cos d)

tan (^1=^
, , , 2 ^ , sm <^i=^ ^ ^.

i — k tan^ 4> A{k, <p)

Art. 43. It is seen that ^i=-<i and since -^>yfei,it
r i+yfei

follows that ^>^i. From (i') it is seen that o<<^<0i, if 4>^-
2

From (2') it is seen that

2

= (i+^i)(i+fe) . . . (i+^„)&i^, . {A)
2

* John Landen, An investigation of a general theorem for finding the length

of an arc of any conic, etc., Phil. Trans. 65 (1775), pp. 283, et. seq.; or Mathe-

matical Memoirs I, p. 32 of John Landen (London, 1780). An article by Cayley

on John Landen is given in the Encyc. Brit., Eleventh Edition, Vol. XVI, p.

153. See also Lagrange, (Euvres, II, p. 253; Legendre, Traite, etc., I, p. 89.
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where the moduli are decreasing and the amplitudes are

increasing.

It is also seen that

fif)
~—
_ I — Vl— Fr-l IV=1,2, .

I +Vl— yfe2^_i \ ^0 = ^

tan (<^„-0c_i) = V'i-^2___j l-a^n <^„_i. . (i)

It is further evident that F{kn, <t>n) approaches the limit

I
dtj)^^, where $ is the limiting value of <^ as w increases.

If <>=-, it follows at once from (i), see also Art. 49, that
2

01= IT, 02 = 27r, . . ., <f)„
= 2"^^ir,

and consequently

K = F(k,-)='^{i+ki){i+k2){i+kz). . . .

Art. 44. Suppose, for example, that it is required to find

F{^, 40°). Using the seven-place logarithm tables of Vega, it

is found that for

</) = 40, sin d = k=^, or ^ = 30,

Vi-yfe2 = ;fe'= 0.86603

I — ^' = 0.13397 log (i — ^') =9-1270076

I +^' = 1.86603 colog (1+^') = 9-7290814

^1 = 0.071794 log ^1 = 8.8560890

1 — ^1=0.928206 log (i — ^1) =9.9676444

1+^1 = 1.071794 log (i+^i) =0.0301098

log ^12 = 9.9977542

ife'i =0.997418 log ^'1 = 9.9988771

I — ^'1=0.002582 log (i — ^'i) = 7.4121244

I +^'1 = 1.997418 colog (i +^'0=9.6995263

/.'J
= 0.001293 log ^2 = 7.1116507



70 ELLIPTIC INTEGRALS

i — ife2= 0.998707 log (1—^2) =
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The value given in Legendre's tables is

.7116472757

Art. 45. The formulas of Art. 42 may be used to increase

the modulus and decrease the amplitude; for if the subscripts

be interchanged, it is seen that

nk,<t>)=^Mki,<t>i), (i)

I+k

i+k

sin {2(t>i — 4>)=k sin <t>,

where ki>k and (t>i<<l>.

Applying the formula (i) n times, there results

2 2

I+* 1+^1 I+^n-l

or, since

2 ^1 2 k2 .

=—-^=, etc..

1+^ V/fe' i+^i V^i

it is seen that

F{k ,<t>) = k„^
^'^' -^'^-'

F{K^),

where

2V^,-l
h= r^, sin (2 <^,- (/>,-!

)

I+Kc-l

= ^„_i sin(/)r-i(j; = i,2, . . . ; ^0 = ^, <^o = <^)-

It follows also that

= r ^'^
rsec0(i.i. = logetan(-+

> V'i-sin2 ^ Jj \4
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and

Art. 46. The method of the preceding articles may also

be used to evaluate ^^(30°, 40°), thus

^= .5 log ^ = 9.6989700

1+^ = 1.5 log (1+^) =0.1760913

log V^ = 9.8494850

log 2=0.3010300

colog (1+^) =9.8239087

log ^1 = 9.9744237

^1= .942809 log All = 9.9744237

i+^i = 1.942809 log (i+^i) =0.2884301

log V^ = 9.9872ii8

log 2 =0.3010300

colog (i+*i) =9.7115699

log/b2 = 9-9998ii7

k2= .999567 log ^2 = 9-9998117

1+^2 = 1.999567 log (1+^2) =0.3009359

log V/fez = 9.9999059

log 2 =0.3010300

colog (1+^2) =9.6990641

ki = :

log ki = 0.0000000

log ^ = 9.6989700

log sin <^ = 9.8080675

log sin (2</)i - <^) =9-5070375

2</)i — <^=i8° 44' 50."o5

201 = 58° 44' 5o."io

01 = 29° 22' 25".o5
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log Ai = 9.99744237
log sin 01=9.6906403

log sin (2 02 - 4>i) = 9.6650640

202-01 = 27° 32' 43."08

202 = 56° 54' 68."i3

02 = 28° 27' 34."o6

log ^2 = 9.9998117
log sin 02 = 9.6780866

log sin (2 0.j- 02) =9.6778983

203-02 = 28° 26' 45."53
203 = 56° 54' i9."59

03 = 28° 27' 9."78

When ^3 = 1, then sin (2 04-0,) = sin 03, or 04 = 03.

••• 04 = 28° 27' 9."78

T = ^4° 13' 34."89

^ =7+^=59° 13' 34."89

* = S9° 13' 34."89

logiotan$= .225120S

log log tan* = 9.3524156

cologM = o.3622i57 (*see below)

log V^i =9.9872118

log Vife2 = 9.9999059

colog ^^ = 0.1505150

log F(3o°, 40°) =9.8522640

F(30°,4o°)= .711647

Art. 47. Cayley, Elliptic Functions, p. 324, introduced instead

of the standard form of the radical, a new form

Va^cos- (p+b'^ sin- (a>b);

* Division is made by the modulus M to change from the natural to the com-

mon logarithm, where J/=.43429448.
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and he further wrote

F{a, b, </.) = r*-^
Jo w a

d(t>

^ cos^ (p+b^ sin^ 4>

E{a, b, 4>) = rVa2 cos^ ,p+b^ sin^ <^.

(i)

(2)

It is clear that

Va^ cos^ <t>+b^ sin^ (j) = aVi —P sin^ (^,

where

*-.-»^,*'=^.

The functions (i) and (2) are consequently -F{k, 0) and

aE{k, <j>).

Fig. 17.

In the figure let P be a point on the circle, whose centre is

and let Q be any point on the diameter AB.

Further let

QA=a,QB = b, ZAQP = <t>i, ZA0P = 2cj,, £ABP =
<i>.

Write ai=\{a+b), bi = Vab, ci=^{a— b).

It follows at once that

OA=OB=OP = ai,OQ = ai-b=^{a-b)=Ci,

QP sin <j>i=ai sin 20,

QP cos 0i=ci+ai cos 20.
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On the other hand

Qp = ci2+2Ciai cos 20+ai2=^(a2+62)+|(a2-62) cos 2<j>

=|(a2+&2)(cos2 0+sin2 <^) +§ (a2- ^2) (cos2 0-sin2 <t>)

= a- cos2 (t>+b~ sm2 0.

Therefore it follows that

ai sin 24>
,

ci+fli cos 2</)
sin 01 = ^

, cos 01 = - ^

Va2 cos2 0+^)2 sin2 0' \/a2 (-032 0+^2 sin2 0'

and consequently

2 2 ^ I A " 2 J. '^i^^'^ cos2 0+& sin2 0)2 ,

ai2cos2 0i+6i-sin2 0i=—\ „ , „ . , ^
• • (i)

a-' COS'' 0+0'' sin''

It is seen at once that

h{a — b) sin 2
sin (2 — 0i) =

\/a~ cos2 0+^2 sin2

, . a cos2 + & sin2 r / \

cos (20-0i)= - ; or, from (i),

Va2 cos2 4>+b~ sin2

cos (20— 0i)=—Vai2 cos2 0i+6i2 sin2 0i

.

ai

If in the figure we consider the point P' consecutive to P,

then, PQd(l>i=PP' sin PP'Q = 2ai cos (20-0i)(i0;

or, writing for PQ its value from above, there results

2d4> <i(t>i

Va^ cos2 0+62 sin2 V'ai2 cos2 0i+6i2 sin2 0i

Integrating, this expression becomes

F{a, b, 0)=§F(ai, 61, 0i),

or

F{k, 0)=i -F{k', 0') =-^ ^(^1. <^i).

2 fli i+«
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where

. ^ ^{i+k') sin 2<j>

sin <t>i
= , .

- •

V I — ^^ sin^ (/)

a? a a^ \a-\-hJ \i+k /

or, yfei = i^^, and ^' = ^

—

r^, as given at the end of Art. 42.
i+k i+«i

Art. 48. Cayley derives a similar formula for the integrals

of the second kind as follows, his work being here in places con-

siderably simplified. From the relation of Art. 42, we have

sin {2 4> — 4>i) =ki sin </>!, or

sin 24, cos </)i — cos 20 sin </>i =ki sin <t>i;

it follows that

cos 20= —^1 sin^ 01-1-cos 0i A0i,

and consequently

2 cos^ 0= I —^1 sin- 01+ cos 0iA0i,

2 sin^ = 1+^1 sin^ 0i — cos 0iA0i.

From these two relations it is seen at once that

2 (a2 cos2 + ^2 sin2 0) =a^+b^-{a^-b^)ki sin^ 0i

+ {a^-b^)cos 0iA0i = (a2+ 62)(cos2 0i+sin2 0i)

-ia^-b^)ki sin2 0, + (a2-^)2)cos 0iA0i

= 4(01^ cos2 0i+&r sin2 0i)

— 2bi-+4Ci cos 0iV ai^ cos2 0i+&i2sin2 0i.

Multiply this expression by the differential relation given

above, viz.,

2J0 _ dtj)i

Va^ cos2 0+62 sin2 Var cos^ 0i+6i2 sin^ 0i'
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and integrating, there results

E{a, b, </.)=£(ai, bi, ^,)-^bx^F{ai, bi, <Pi)+ci sin <^i,

where

sin 01= -'^i^i"^*

Va^ cos2 ,p+b- sin2 0*

It follows at once that

E{k, 4>)='^Eiku 0i) -- —F{ku 00+^ sin 0i," 2 flai a

or

£(^, 0)=^(i+y)£(^^, 0i)__A_/7(^j_ 4>i)+ki-k')sm<pi,

with the initial relation

sin (2</) — 0i) =^1 sin 0i.

Art. 49. From the formula connecting </> and <pi, which
may be written in the form (see end of Art. 42)

. ^ (1+^') tan
, ,

I — ^ tan-

it is seen that and <pi vanish at the same time; and further

since

d4>'_. ,,^ i+^'tan-0 cos^ 0i

d^~^^'^ \i-/fe'tan2 0)2 cos2
<t>

'

a positive quantity, it appears that <i>i increases with </>. It is

further evident that tan 0i =0 when tan = 00 . It is clear from

(i) that when <t>
= o, <j)i=o and when tan = \(—, = -yi--, then

0i=§7r; and in general to the values -, tt, 27r, . . . of 0, there
2

correspond the values tt, it, 47r, . . . . of 0i.

Art. 50. Denote the complete functions F(a,b,-],E(a,b,-
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by F{a, h,), E{a, h), then

F{a, h) =lF{ai, h, x) =fU, b,,
^)

=F(ai, h) ;

and similarly

E{a, b) = 2E{ai, bi)-h^F{ai, bi).

Art. 51. Continued repetition of the above transformations. In

the same manner as ai, bi, ci were derived from a, b, we may
derive 02, 62, C2 from oi, bi, etc., and thus form the following

table

:

ai=^ (a+b), bi = Vab, Ci=|(a-6),

a2=^ (ai+bi), b2 = Vaibi, C2 = ^ (ai-bi),

a3=i (22+^2), b3 = Va2b2, C3=i ia2-b2),

(Va-VbY
Note that ai-bi=- and that

2

a2-b2=^^^-V^i=^^^^-[V^i-VV,]Vbl,

so that

02 — 02 < or 32 — O2 < -^^

7,
—

c- -1 1 V • *u * J,
^a2-b2 ^(Va-Vly ,.

Smiilarly it is seen that a^ — biK <- —-; and in
2 2'^

(y/^—x/b)"
general a„-b„< ——, or lim (a„— 6„) = o. It is clear that

as n increases a„ and &„ approach (very rapidly) one and the same
limit, which is called* by Gauss the arithmetico-geometrical mean
and denoted by him with the symbol M{a, i)=/i. However,

when a„ = 6„, then

F{an., bn, 4>)=—and £(a„, &„, ^) =a„(/>;
an

* Gauss, Werke, III, pp. 361-404.
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further if <^=|ir, it is seen that

F{an, b„) =— and £(a„, b„) =- o„, where a„=n.
2a„ 2

The equation F{a, b, <^) =| F{ai, bi, 0i) gives

F{a, b, 4>)=iF{ai, bi, <^i)=^ F{a2, 62, <i>2)
2*'

2" 2"a„

where the (f>'s are to be calculated from the formula

ai sin 2<j>
sin <t>i

=
V a^ cos^ 0+6^ sin^

(Z2 sin 2<^i
sin (j)2=-

\ ai^ cos^ 01 +61^ sin^ (pi

Art. 52. r/je integrals of the second kind. Note that, since

Fia,b, <p)^^F{ai,bi, <^i),

the formula above for the £-function may be written

E{a, b, 4,)-a^F{a, b, 4>)=E{ai, bi, <t>i)-ai^F{ai, bi, 4>i)

+F{ai, bi, 0i)(ai2-|a2_ijj2)_|_cjsin0i;

or, since ar-^a^-^bi^= -l{a^-b^) = -aici,

the above equation is

E{a, b, 4>)-a^F{a, b, <t>)=E{ai, bi, <t>i)-ai'^F{ai, bi, dn)

— a\CiF{ai, bi, 4>i)+C\ sin (pi.

Observing that, as n increases,

hm [E{an, b„, <!)„)- a„^F{a„, b„, <^n)] = o,

it is seen that

E{a, b, <t>)-a^F{a, b, 0) = -[2aiCi+4a2C2+SazC3+ ]F{a, b, <t>)

+ci sin 01+C2 sin 02+C3 sin (^3+ • • • ;

or finally

E{a, b, 0) = [a2-2CiCi-4a2C2-8a3C3 - . . . ]F{a, b, <t>)

+ci sin 4>i+C2 sin 02+C3 sin <t>3+ . . .
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In particular, if <#> =|ir, we have Art. 49, <^i =ir, 02 = 2%,

and then

£(a, 6) = [(2^ — 2aiCi — 432^2— . . . ]—

.

2 an

It also follows immediately that
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the last line of the above expression may be written

k[lV^ sin 4>i+l\^kik2 sin <^2-Fiv^^i^2*j sin <t>s+ . . . ].

In particular if <^ = §ir, we have

Art. 53. As a numerical example (see Legendre, Traite etc.,

T. I, p. 91) , let a = I, 6 = I
"^2 — V3 = cos 75°, and let tan <l>

= -J-7=.
\ V3

TO

It follows that k^ = i ^ = sin 75°.
a~

The following table may be at once constructed.

Index

(o)

(i)

(2)

(3)

(4)

I .0000000:

0.6204095

0.5690761

0.56747^4

0.5674713'

0.2588190

0.5087426

0.565S68S

0.5674701

0.5674713

0.3705905

0.0603334

0.0016037

O.OOOOOII

0.965925S, 0.258S190 47 3 31

0.5SS790S

0.1060200

0.002S260

0.0000020

0.S082856 62 36 3

0.9943636 119 55 48

0.9999959240 o o

o. 9990900480 o o

(See Cayley, loc. cit., p. 335.)

The complete integral fi = = 2.768063 . . . and
2 Ui

i^(75°, 47°3'3i")=t'v = o.9226877 • • •

Note that the first integral is three times the second.

It is also seen that

Ui-j-]= aici = .2332532

+ 2a2C2 = .0686686

+4a3C3 = .0036402

+8a4C4 = .0000051

= •3055671

and £1 = 1.0764051
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The computation of E{k, <i>) is found in the next article.

Art. 54. To establish in a somewhat different manner

the results that were given in the preceding article, consider * a

function G{k, (j)) composed of an integral of the first and of an

integral of the second kind, such that

Ju Vl— ^2sin2 (f,

where a and are constants.

Making in this integral the substitutions of Arts. 42 and 48,

namely

d^^i+h d^^
gj^2 ^ = i(i+;fei sin2 4>i-A4>i cos <^i),

it is seen that

G(^, 0) = l±^-i[G(^,, <^i)-i^sin0i], . . . (i)
2

where

.*0=f'^
G{K4>.)=1 ^ii±^ii>Ili^d<^

A4)i

the constants ai and /3i being defined by the relations

We saw in Art. 48 that

, i-Vi-F
^ ^ ,—

-

Ki = . , tan {<t>i
— <b) = V 1 — k- tan 4>,

I + V I — ^2

where ^1 <^ and 4>i> 4>.

It follows directly from (i) that

22 2

iTi+^i . i+^i 1+^2, .
_,

,— /3 sin <)!)iH jSi sm 4)2+
2L 2 22

i+^i 1+^2 i+^"a • . 122 2 J

* See also Legendre, Traile, etc., I, p. 108.
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where

k\k2

and

/3p = /3

a„=a+|/3(l
^1 k\k2 k\k2

2 2^ 2"-

Since /3„ becomes o with kn, it is seen that

lim G{h
X*

a„ d(i)=a„4)n.

From Art. 43 we had

i+^i 1+^2 I+^n
<t>n=F{k, <t>),

and, see Art. 42,

2 k ' 2 k\ '

It follows that the above formula becomes

G(^,^)=f(^,<^)[.+^i+^+^^+'-^^+ . .

.)_

—

T

sin <^iH 5— sin <^2H n— sm <t>z+ .

k\ 2 2^ 2^^

If in this formula we put a = i, /3= — A^, it becomes

1^2 ,
k-[k2kz

£(^,.^) = F(^,<^)[i-f(i+^^+^^

"^'^i_:_ ^ I

^kik2,

2
+jfep-^sin «/>i+

".;"" sin <)2- 5— sm 03+ .

where

/Cp "^
1 — Vi— A;Vi

i+Vi-)feVi

and tan (0p— <^p-i) = v^i-'feVi tan <^p-i.
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These results verify those of Art. 52.

With Legendre, Fonct. Ellip., T. I., p. 114, we may find

E{k, 4>) where ^ = sin 75° and tan </) = ^/—^.

Using the results of Art. 53 it is seen that

sin (^1 = .3290186

sin 02= .0522872

sm 4>2=— .C013888

kv kik2k.:ki .

Sin (j>i = .0000010
16

Writing

sum = .3799180

24 8 16 '

it is found that Z, = .3888658 . . .

In Art. 53 it was seen that F{k, 4>) = .9226877 . . .

It follows that E{k,(j))=F{k,<^))L+.s^ggI8o

0.7387196 . . .

Further since

E

there follows

't)-i'-t)'-

£1=1.0764049 . .

.

Art. 55. Inverse order of transformation. If the modulus k

is nearer unity than zero, the following method is preferable.

The equation (i) of the preceding article may be written

G{ki, 4>i)=^G{k, 0)+|i sin <^i, since fi = ^.
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If in this formula the suffixes be interchanged, then

where now

2 B
G{k, (i>)=——-G{ki, 0i)+-sin0,

i+k k

.2^ ^

ki= r, sin (201 — 0) =^ sin (^,

i+«

ki>k, <^i<</).

The continued repetition of (2) gives

G{k, (t>)=^ sin 4>+-^ sin 0iH

—

-=^^2 sin 4,2

k Vk Vk

-f—;=— |33Sin<^jH 7= /3„-i sin 0„-i

Vk
where

kki . . . kp-i

and

^\ ki k\k2 ' ' ' k\k2 kp-i

Since K approaches unity (rapidly) as n increases,

^ r*f.a„+/3„sin2 ,

limG(*„, </.„)=J cos <t>

^^

= (a„+ ^n) loge tan(-+Y) -^n S^ <#>»•

In Art. 45 it was shown that

^ k^^bEI^lo, tan(^+^) =F{k, 0)
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We may consequently write the above formula

G{k, <t>)-F{k, <t>)[a-^-(^z+^+-^+ . .

^1^2 • • ^n-1

,2 2^

Vk Vkki V/feyfeiyfe2

+- sin^H—^sin<^iH

—

^==sm4>2-i—
, ^_ ,

sin <t>3+ .

^sin0„-i—
Vkkl . . . k„-2 Vkki . . . k

Writing a = i , /3 = — yfe^ in this formula, it becomes

E{k, 4,)=F{k, 4>)^i+k(i+^+~+ . . .

2"-^ 2" y
klk2 . . kn-1 ^1^2 • • kn-\l

.

/ 2 2^
— ^|sm(/)H—-=sin<>iH—p=sm<^2+ • •

\ Vk Vkkl

= sin</.„ .

n-l J

sin (/>„-!- = sin<^„),
V ^^1^2 . • • ^n-2 vkkl

where

kp =——^— and sin {2<t>p
— <j>p~i)=kp-i sin <t>p-i.

i+kp-i

Taking the example of the preceding article, and using the

values given in Art. 53, it is seen that

— k sin <t>= —0.7071070

— 2Vk sin 01 = — 1 .4 146540

Vk+4—= sin 4)2 = 2.8293085
Vki

F{k, 0) = .9226877

and

F(^, (^) 1+^-— = 0.0311720

E{k, <j>)= 0.7387195 . . .
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Art. 56. Two of the principal problems that appear in

practice will now be given.

Problem i. When u and k are given, calculate the values oj snu, cnu,

dn u.

1. Computation of snu. In the Table II, p. 96, is found an imme-
diate answer to the problem.

For when u and ^= sin e are known, the value 4> may be found in

the table and then sn u from the formula sn !<= sin (i>.

If, for example, ^ = 5 = sin d, and m= .47S5i, it is seen that for 9=30°,

M= .47SSi, we have <t>=2-]°, and sin 0=.45399= 5;! u.

2. The computation of en u and dn u are had from the formulas

cnu= ±V (i— in u){i-\-snu),

dnu= :ii^{i—ksnu){i+ksnu).

Problem 2. Having give^i the elliptic Junction, calculate the argument.

1. If snu is known, find u. Table II furnishes the solution. Sup-

pose that a is the given value of snu, and suppose that k = s\n B is also

known. Hence, since snu= sva.^=a, we may determine <(>. With e

and known, we find the value of u from the table. Denote this value

by Mo- From the relation snu = sn Uo, we have (Art. 21),

M = Mo +4tnK \-2m'iK'.

Further in the formula (Art. 12).

sn u= —sn{u-]-2K),

substitute u=—uo, and then we have —snuo=—sn{2K—Uo), so that

u may also have the form

«= 2K—Uo+4mK+ 2m'iK'.

2. li en u and dn u are given, snu and then u may be found as above.



CHAPTER V

MISCELLANEOUS EXAMPLES AND PROBLEMS

I. The rectification of the lemniscate. The equation of the curve is

(y2+i-2)2+a2(/-a:2) = o;

or, writing x=r cos 6, y = r sin 9, the equation becomes

)-2 = (j2 cos 2S.

From the expression ds''- = dr'^-\-r-d9-, the differential of arc is

<fi= =F
dr ade

2 sm^ e

Writing, see II of Art. 3, r=acos0, so that 2 sin^ 9 = sin 0, it is seen

that

n de ^ a p d<t> ^ a p( T- ^

Jo Vi-jsin^e V2J0 Vi-isin^,^ V2 VVI' j

which may be calculated at once from the tables when a and 9 (or 0)

are given. A quadrant of the lemniscate is

Jo Vi-2sin2e "^zjo Vi-isin2 V^ ^^2

2. r/ze rectification of the ellipse.

Let the equation b

From the integral

X^ -y2

Let the equation be—\-— = i,a>b
a^ b^

"IM. dx,

a'^—f
we have, by writing k^=—-— , x=at,

a'

-kV)dt^ P (i-kV)d

Jo V(l-/2)(i_ kV)
Fig. 18.

Finally writing / = sin <t> (see Art. 3) and that is x=a sin 0, we have

j= I A<t>d(t>=aE{<j>).

Jo

SS
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Here k is the numerical eccentricity of the ellipse. The angle 4,= C0Y =
90— CO^, where in astronomy the angle COA is known as the eccentric

anomaly of the point P Writing
<i>
= Tr/2, it is seen that the quadrant

of the ellipse is aE, where E is the complete integral of the second kind.

If the equation of the ellipse is taken in the form

*=osin0, y= 6coS(^,

it follows at once that

, ds'^= a-{i — k'^sm'^ (t>)d<i>'^, or s=aE{<!>).

3. The major and minor axes of an ellipse are 100 and 50 centimeters

respectively. Find the length of the arc between the points (o, 25) and

(48, 7). Find also the length of the arc between the points (48, 7) and

(50, o). Determine the length of its quadrant.

4. If X denotes the latitude of a point P on the earth's surface, the

equation of the ellipse through this point as indicated in the figure, may
be written in the form

a cos X
x= -

It follows at once that

tf2(l-t.2

y=
a(i—e^) sin X

Vi — e'^sia^ X

(i-
ds''=dx^+dy-'=

so that

s=aii-e')
I

Jo (i-

e^ sin- X)''

d\

Fig. 19.

-e- sin^ X)

This integral may be at once

evaluated by the third formula

in Art. 41.

Compute the lengths of arc of the ellipse between 10° and 11° and

between 79° and 80° where a =6378278 meters and €-= 0.0067686.

Compare these distances with the length of an arc that subtends i" upon

a circle with radius=6378278 meters.

5. Plot the curves, the elastic curves, which are defined through the

differential equation

, y-dv
d^=± ; ,

Va"— y*

for the values a= i, 2, 4, 9.

6. The axes of two right cylinders of radii a and b respectively (a > b)

intersect at right angles. Find the volume common to both.

Let the z-axis be that of the larger cylinder and the y-axis that of

the smaller, so that the equations of the cyhnders are

x'^+y^=a- and x^+z^=b^ respectively.

The volume in question is

V-j: Va^-x^ Vb'^-x'^dx.
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Writing t= sn~H j-,-)> (see formula 5a, Art. 23), then x=bsnt, b^—x^=

hhnH, a.'^—x^=aHnH, d<t> = b cnidnldt.

It follows that

F=8a62 I i- °
„ snH-\-—snH\di. (SeeByerly,/«^ Cai., i902,p. 276.)

Joting (see sixth formula of Art. 41, and (ii) of Art. 48) that

Jr-K I
(-K

I

k" Jo '

Noting (see sixth formula of Art. 41, and (ii) of Art. 48) that

it follows at once that

Compute V when a = 60 and 6=12 centimeters respectively; also

find the volume common to both when the shortest distance between

the axes is 8 centimeters.

7. The differential equation of motion of the simple pendulum is

dh dy

dfi^~^Js'

or multipljnng by -3- and mtegratmg,
dt

|y=-2gy+C.

If the pendulum bob starts from the lowest point of its circular path with

the initial velocity that would be acquired by a particle falling freely

in a vacuum through the distance yo, so that iio^=2gyo (Byerly, loc. cit.,

p. 215), it is seen that this is the value of C, and consequently

Further taking the starting-point as the origin (see figure) the equation

of the circular path is x^+y'^—2ay=o, so that

fds\ ' a' l^y\
^

\dt/ 2ay—y'^\dt

and consequently

dy
t =

'^2gJo ^/(yo-y)(2ay-/)'

which is the time required to reach that point of the path whose ordinate

is y.

ting k^=
2a ya

yo y
Writing fe^=— and sin^ <t>=—, this integral becomes at once

/ ^. = \-Fik,,p).
Vi-Ai^sin^* S
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Let OC=CA = ahe the length of the pendulum. Let A be the highest
point reached by it in the oscillation so that the ordinate of A is y^. Let
the angle ACO be a, and let e be the angle PCO, where P is the point
reached at the expiration of the time t.

It is seen that



CHAPTER VI

FIVE-PLACE TABLES

The following tables of integrals are given in Levy's Theorie

des fonctions elliptiques. As stated by Professor Levy, he was

assisted by Professor G. Humbert in compiling these tables from

the ten-place tables that are found in the second volume of

Legendre's Treatise.

Table I gives values of the integrals

K= P'—=ii=== and E= C'd4>Vi-sm^ 6 sin^ <t>.

Jo Vi — sin^ d sin^ Ja

For example, if 6 = 78° 30', then iT = 3.01918 and £ = 1.05024.

Table II gives values of the integral

d<t>
F{k,4>) =

i v -̂ sin^ d sin^ </>

For example, if ^ = 65° and <^ = 8i°, then F(k,<t>) = 1.94377.

Table III gives values of the integral

E{k, <t))
=

J
d4>V I -siii^ 9sin2 0.

For example, if 0=40° and <^ = 34°, then E{k, <>) =0.57972.

92
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I.-THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST AND
SECOND KINDS

8
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II.—ELLIPTIC INTEGRALS OF THE FIRST KIND

<t>
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n.—ELLIPTIC INTEGRALS OF THE FIRST KIND

*
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II.—ELLIPTIC INTEGRALS OF THE FIRST KIND
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III—ELLIPTIC INTEGRALS OF THE SECOND KIND

*
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III.-ELLIPTIC INTEGRALS OF THE SECOND KIND

<l>
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